SYNTHESIS OF 8-AZAPROSTAGLANDIN E, AND E,

J.W. Bruin, H. de Koning^{*} and H.O. Huisman Laboratory of Organic Chemistry, University of Amsterdam, Nieuwe Achtergracht 129, Amsterdam, The Netherlands.

(Received in UK 24 October 1975; accepted for publication 6 November 1975)

In searching for prostaglandins with more specific biological activities and free of undesirable side-effects, we chose to synthesize prostaglandin analogs containing a nitrogen atom in the five membered ring A recent publication¹ concerning the **s**ynthesis of ll-deoxy-8-azaprostaglandin E_1 (<u>6b</u>) prompts us to report an alternative synthetic route² leading to <u>6b</u> and ll-deoxy-8-azaprostaglandin E_2 (<u>9b</u>).

The ester function of methyl D,L-pyroglutamate <u>1</u> was selectively reduced with lithium borohydride in THF affording carbinol <u>2a</u> [95%; m.p. 65-67⁰; ir 3640, 3300, 1670 cm⁻¹]. Acetylation of the hydroxyl function - to prevent O-alkylation in the next step of the synthesis - provided <u>2b</u> [95%; ir 3420, 3200, 1730, 1680 cm⁻¹; nmr 2.10 (s, CH₃CO)]. Reaction of the sodium salt of <u>2b</u> with methyl 7-bromoheptanoate to give <u>3a</u>, followed by subsequent methanolysis of the protecting acetate function, furnished the primary alcohol <u>3b</u> [40-45%; ir 3650, 3400, 1720, 1660 cm⁻¹; nmr 3.68 (s, OCH₃)]. Oxidation of the alcohol with DMSO-DCC³ gave the unstable aldehyde <u>4</u>, which was not purified but directly treated with the sodio derivative of dimethyl 2-oxo-heptylphosphonate⁴ in THF.

The enone <u>5</u> [60%; nmr 6.60 (q, $J_{12,13}$ = 8, $J_{13,14}$ = 16, 13-CH), 6.22 (d, $J_{13,14}$ = 16, 14-CH), 3.69 (s, OCH₃), 0.94 (t, $J_{19,20}$ = 6; 20-CH₃)] thus obtained was reduced with zinc borohydride⁴ in dimethoxyethane and the resulting mixture of C₁₅-epimeric alcohols was separated by column chromatography over silica gel into a more polar [<u>6a</u>; ir 3650, 3450, 1720, 1660 cm⁻¹; nmr 5.72 (q, $J_{13,14}$ = 15.5, $J_{14,15}$ = 5.3, 14-CH), 5.52 (q, $J_{12,13}$ = 7.5, $J_{13,14}$ = 15.5, 13-CH), 3.66 (s, OCH₃), 0.91 (t, $J_{19,20}$ = 6, 20-CH₃); m/e 353 (M), 335 (M-H₂O), 322 (M-OCH₃), 252 (M-C₅H₁₁CHOH), 226 (M-C₅H₁₁CH(OH)CH=CH)] and a less polar isomer (<u>7a</u>; spectra very similar to <u>6a</u>).

The "natural" relative configuration at C_{15} was tentatively assigned to the more polar isomer by analogy with the chromatographic behaviour of similar derivatives of the natural prostaglandins.

Saponification of themethyl ester with one equivalent of potassium hydroxide in aqueous ethanol afforded PGE, analog <u>6b</u>.

The corresponding prostaglandin E_2 analog was prepared in an analogous way. Alkylation of <u>2b</u> with methyl 7-bromo-5-heptynoate, followed by methanolysis of the acetate and partial catalytic hydrogenation of the triple bond led to the formation of the alcohol <u>8</u> [55-60% from <u>2b</u>; ir 3450, 1725, 1670 cm⁻¹; nmr 5,2 - 5,8 (m, 5-CH, 6-CH)⁵, 3.68 (s, OCH₃); m/e 255 (M), 224 (M-CH₂OH), 192 (M-CH₂OH-CH₃OH)]. Moffatt oxidation of <u>8</u>, followed by Horner reaction of the obtained crude aldehyde with dimethyl 2-oxoheptylphosphonate and subsequent reduction of the resulting enone [50-60%; nmr 6.58 (q, J_{12,13}= 8, J_{13,14}= 16, 13-CH), 6.14 (d, J_{13,14}= 16, 14-CH), 5,2 - 5,8 (m, 5-CH, 6-CH), 3.67 (s, OCH₃), 0.93 (t, J_{19,20}= 6; 20-CH₃)] with zinc borohydride produced a mixture of the C₁₅-epimeric alcohols.

Chromatographic separation afforded the more polar isomer with "natural" stereochemistry at C_{15} , <u>9a</u> [ir 3640, 3480, 1720, 1665 cm⁻¹; nmr 5.2 - 5.9 (m, 4 vinyl H's), 3.66 (s, OCH₃), 0.90 (t, $J_{19,20} = 6$, 20-CH₃); m/e 351 (M), 333 (M-H₂O), 320 (M-OCH₃), 250 (M-C₅H₁₁CHOH), 224 (M-C₅H₁₁CH(OH)CH=CH)] and the less polar 15-epicompound <u>10a</u> (spectra very similar to <u>9a</u>). Saponification of methyl ester <u>9a</u> gave the desired PGE₂ analog <u>9b</u>.

Prostaglandin analogs <u>6b</u> and <u>9b</u> showed to be substrates for 15-hydroxy--prostaglandin dehydrogenase, wheras the corresponding C_{15} -epimers <u>7b</u> and <u>10b</u> were not consumed. Methyl ester <u>6a</u> was more active in several biological assays⁶ (like inhibition of gastric ulcers and decrease of blood pressure) than its C_{15} -epimer <u>7a</u>. Details will be published in the full paper.

<u>96</u> R=H

<u>106</u> R=H

REFERENCES:

- 1. G. Bolliger and J.M. Muchowski, Tetrahedron Lett., 2931 (1975).
- This work was presented as a lecture at the "Vth Symposium on the Chemistry of Heterocyclic Compounds", held at Bratislava, Czechoslovakia, July 7-11, 1975. Summaries p. 102.
- 3. K.E. Pfitzner and J.G. Moffatt, <u>J.Amer.Chem.Soc.</u>, <u>88</u>, 5661, 5670 (1965).
- 4. E.J. Corey, N.M. Weinshenker, T.K. Schaaf and W. Huber, <u>J.Amer.Chem.Soc.</u>, <u>91</u>, 5675 (1969).
- 5. Prostaglandin numbering.
- Kindly performed by Hoffmann-La Roche Inc., Nutley, U.S.A. We thank dr. W. Leimgruber for making these results available to us.